The recent increase in the use of aerial vehicles raises concerns about the safety and reliability of autonomous operations. There is a growing need for methods to monitor the status of these aircraft and report any faults and anomalies to the safety pilot or to the autopilot to deal with the emergency situation. In this paper, we present a real-time approach using the Recursive Least Squares method to detect anomalies in the behavior of an aircraft. The method models the relationship between correlated input-output pairs online and uses the model to detect the anomalies. The result is an easy-to-deploy anomaly detection method that does not assume a specific aircraft model and can detect many types of faults and anomalies in a wide range of autonomous aircraft. The experiments on this method show a precision of 88.23%, recall of 88.23% and 86.36% accuracy for over 22 flight tests. The other contribution is providing a new fault detection open dataset for autonomous aircraft, which contains complete data and the ground truth for 22 fixed-wing flights with eight different types of mid-flight actuator failures to help future fault detection research for aircraft.
We present a dataset of several fault types in control surfaces of a fixed-wing unmanned aerial vehicle (UAV) for use in fault detection and isolation (FDI) and anomaly detection (AD) research. Currently, the dataset includes processed data for 47 autonomous flights with 23 sudden full engine failure scenarios and 24 scenarios for 7 other types of sudden control surface (actuator) faults, with a total of 66 minutes of flight under normal conditions and 13 minutes of post-fault flight time. It additionally includes many hours of raw data of fully autonomous, autopilot-assisted and manual flights with tens of fault scenarios. The ground truth of the time and type of faults is provided in each scenario to enable evaluation of the methods using the dataset. We have also provided the helper tools in several programming languages to load and work with the data and to help the evaluation of a detection method using the dataset. A set of metrics is proposed to help to compare different methods using the dataset. Most of the current fault detection methods are evaluated in simulation and, as far as we know, this dataset is the only one providing the real flight data with faults in such capacity. We hope it will help advance the state of the art in AD or FDI research for autonomous aerial vehicles and mobile robots to enhance the safety of autonomous and remote flight operations further. The dataset and the provided tools can be accessed from https://doi.org/10.1184/R1/12707963 .
Many aerial robotic applications require the ability to land on moving platforms, such as delivery trucks and marine research boats. We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. Unlike many existing methods for landing on fast-moving platforms, this method does not rely on additional external setups, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only the minimal set of hardware and localization sensors. The videos and source codes are also provided.
The introduction of fully-actuated multirotors has opened the door to new possibilities and more efficient solutions to many real-world applications. However, their integration had been slower than expected, partly due to the need for new tools to take full advantage of these robots.As far as we know, all the groups currently working on the fully-actuated multirotors develop new full-pose (6-D) tools and methods to use their robots, which is inefficient, timeconsuming, and requires many resources.We propose methods that extend the existing flight controllers to support the new fully-actuated robots and bridge the gap between the tools already available for underactuated robots and the new fully-actuated vehicles. We introduce attitude strategies that work with the underactuated planners, controllers, tools, and remote control interfaces, all while allowing taking advantage of the full actuation. Moreover, new methods are proposed that can properly handle the limited lateral thrust suffered by many fully-actuated UAV designs. The strategies are lightweight, simple, and allow rapid integration of the available tools with these new vehicles for the fast development of new real-world applications.The real experiments on our robots and simulations on several UAV architectures show how the strategies can be utilized. The source code of the PX4 firmware enhanced with the proposed methods and its simulator with our fully-actuated hexarotor model are provided with this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.