2013
DOI: 10.1007/978-3-319-03146-0_1
|View full text |Cite
|
Sign up to set email alerts
|

Algebra and Geometry Through Hamiltonian Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
8
0
9

Year Published

2014
2014
2021
2021

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 38 publications
(18 citation statements)
references
References 26 publications
1
8
0
9
Order By: Relevance
“…Hence, according to the definition of Liouville integrability (see [1][2][3]12]), this system is integrable.…”
Section: Lemma 21 the System Given By A Pair (F (R) V (R)) Is Integmentioning
confidence: 99%
“…Hence, according to the definition of Liouville integrability (see [1][2][3]12]), this system is integrable.…”
Section: Lemma 21 the System Given By A Pair (F (R) V (R)) Is Integmentioning
confidence: 99%
“…The marked Fomenko-Zieschang molecule as an invariant of Liouville equivalence. We recall several classical definitions (see [8]- [13]). Consider a symplectic manifold (M 4 , ω), where ω is a symplectic form, that is, a closed nonsingular antisymmetric form on the tangent vectors to M 4 : ω(a, b) := ω ij a i b j .…”
Section: The Classical Statement Of the Locally Planar Billiard Problemmentioning
confidence: 99%
“…В результате выводится более общий результат, непосредственно не связанный с гамильтоновыми системами. Стоит заметить, что изучение гамильтоновых систем часто позволяет получать не связанные с ними алгебраические и геометрические результаты, например, из работ [5], [6].…”
Section: § 1 введениеunclassified