We present a single common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT), that have been hitherto solved using diverse tools and techniques, over fields of zero or large characteristic. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied models -depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas -can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely: