Abstract. Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. The transcendence degree (trdeg) of a set {f1, . . . , fm} ⊂ F[x1, . . . , xn] of polynomials is the maximal size r of an algebraically independent subset. In this paper we design blackbox and efficient linear maps ϕ that reduce the number of variables from n to r but maintain trdeg{ϕ(fi)}i = r, assuming fi's sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing:1. Given a circuit C and sparse subcircuits f1, . (k, s, n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits. The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.