DOI: 10.11606/d.45.2019.tde-23092019-132831
|View full text |Cite
|
Sign up to set email alerts
|

Álgebras train

Abstract: We study the structure of power associative algebras which are train algebras. First we show the existence of idempotents, which are all principal and absolutely primitive. Then consider the train equations involving the Peirce decomposition. When the algebra is finite dimensional, it follows that the size of the Pierce components are invariant and the upper limit for its nil-indexes are studied for some idempotent. Furthermore, we show that locally train algebras are train algebras. Then we get a complete des… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?