AMIR MORAD, LEONID YAVITS, and RAN GINOSAR, Technion GP-SIMD, a novel hybrid general-purpose SIMD computer architecture, resolves the issue of data synchronization by in-memory computing through combining data storage and massively parallel processing. GP-SIMD employs a two-dimensional access memory with modified SRAM storage cells and a bit-serial processing unit per each memory row. An analytic performance model of the GP-SIMD architecture is presented, comparing it to associative processor and to conventional SIMD architectures. Cycle-accurate simulation of four workloads supports the analytical comparison. Assuming a moderate die area, GP-SIMD architecture outperforms both the associative processor and conventional SIMD coprocessor architectures by almost an order of magnitude while consuming less power.