2020
DOI: 10.17721/2706-9699.2020.1.02
|View full text |Cite
|
Sign up to set email alerts
|

Algorithm for Variational Inequality Problem Over the Set of Solutions the Equilibrium Problems

Abstract: In this paper, we consider bilevel problem: variational inequality problem over the set of solutions the equilibrium problems. To solve this problem, an iterative algorithm is proposed that combines the ideas of a two-stage proximal method and iterative regularization. For monotone bifunctions of Lipschitz type and strongly monotone Lipschitz continuous operators, the theorem on strong convergence of sequences generated by the algorithm is proved.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 17 publications
0
0
0
1
Order By: Relevance
“…Показано, що запропонованi алгоритми можна застосувати до монотонних дворiвневих варiацiйних нерiвностей в гiльбертових просторах. Попереднi результати опублiковано в роботах [15,16].…”
unclassified
“…Показано, що запропонованi алгоритми можна застосувати до монотонних дворiвневих варiацiйних нерiвностей в гiльбертових просторах. Попереднi результати опублiковано в роботах [15,16].…”
unclassified