This work presents an approach to motion planning for robotic manipulators that aims at improving path quality in terms of safety. Safety is explicitly assessed using the quantity called danger field. The measure of safety can easily be embedded into a heuristic function that guides the exploration of the free configuration space. As a result, the resulting path is likely to have substantially higher safety margin when compared to one obtained by regular planning algorithms. To this end, four planning algorithms have been proposed. The first planner is based on volume trees comprised of bubbles of free configuration space, while the remaining ones represent modifications of classical sampling-based algorithms. Several numerical case studies are carried out to validate and compare the performance of the presented algorithms with respect to classical planners. The results indicate significantly lower danger metric for paths obtained by safety-oriented planners even with some decrease in running time.