2017
DOI: 10.1287/ijoc.2016.0729
|View full text |Cite
|
Sign up to set email alerts
|

Algorithms for Generalized Clusterwise Linear Regression

Abstract: Cluster-wise linear regression (CLR), a clustering problem intertwined with regression, is to find clusters of entities such that the overall sum of squared errors from regressions performed over these clusters is minimized, where each cluster may have different variances. We generalize the CLR problem by allowing each entity to have more than one observation, and refer to it as generalized CLR. We propose an exact mathematical programming based approach relying on column generation, a column generation based … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
19
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 32 publications
(20 citation statements)
references
References 27 publications
0
19
0
1
Order By: Relevance
“…As noted previously, the basic version of CRIO that we implemented is not highly scalable, which limited us to regression models over five features and five clusters for 236 census tracts in this analysis; quite simply, this is the computational price to be paid for global optimality that previous approaches lacked. Future work should look at incorporating one or more of the scalability enhancements for the CRIO methodology (Bertsimas and Shioda 2007;Zhu, Li, and Kong 2012;Park et al 2017) that involve a range of techniques from pre-clustering to symmetry breaking to column generation methods for optimization.…”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations
“…As noted previously, the basic version of CRIO that we implemented is not highly scalable, which limited us to regression models over five features and five clusters for 236 census tracts in this analysis; quite simply, this is the computational price to be paid for global optimality that previous approaches lacked. Future work should look at incorporating one or more of the scalability enhancements for the CRIO methodology (Bertsimas and Shioda 2007;Zhu, Li, and Kong 2012;Park et al 2017) that involve a range of techniques from pre-clustering to symmetry breaking to column generation methods for optimization.…”
Section: Discussionmentioning
confidence: 99%
“…Future work should look at incorporating one or more of the scalability enhancements for the CRIO methodology (Bertsimas and Shioda 2007; Zhu, Li, and Kong 2012; Park et al. 2017) that involve a range of techniques from pre‐clustering to symmetry breaking to column generation methods for optimization.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…El segundo en[18] donde proponen el uso de CLR para determinar la relación entre la motivación académica y la intención de abandonar estudios en instituciones de educación superior alemanas. Y el tercero en[19] donde proponen un CLR generalizado donde una entidad puede tener más de una observación e implementan y comparan tres algoritmos en un problema de mantenimiento de existencia de unidades empleado para pronosticar efectos de halo y canibalización en promociones utilizando datos reales de minoristas de una gran cadena de supermercados.En 2018 se seleccionan cuatro trabajos, a saber: En[20] formulan el problema CLR como un problema de optimización no convexo y no suave utilizando la función de error de regresión al cuadrado. En este problema, la función objetivo se representa como una diferencia de funciones convexas y se definen condiciones de optimalidad.…”
unclassified