Hepatitis refers to the inflammation of the liver. A major cause of hepatitis is the hepatotropic virus, hepatitis B virus (HBV). Annually, more than 786,000 people die as a result of the clinical manifestations of HBV infection, which include cirrhosis and hepatocellular carcinoma. Sequence heterogeneity is a feature of HBV, because the viralencoded polymerase lacks proofreading ability. HBV has been classified into nine genotypes, A to I, with a putative 10th genotype, "J," isolated from a single individual. Comparative analysis of HBV strains from various geographic regions of the world and from different eras can shed light on the origin, evolution, transmission and response to anti-HBV preventative, and treatment measures. Bioinformatics tools and databases have been used to better understand HBV mutations and how they develop, especially in response to antiviral therapy and vaccination. Despite its small genome size of ~3.2 kb, HBV presents several bioinformatic challenges, which include the circular genome, the overlapping open reading frames, and the different genome lengths of the genotypes. Thus, bioinformatics tools and databases have been developed to facilitate the study of HBV.