The idea of remote laboratories is reviewed, and the potential of the approach on selected examples with special focus on the field of optical metrology is illustrated. The concept of remote metrology is extended beyond the simple exchange of data between distant laboratories and the remote access to experimental facilities embedded in modern educational concepts. We describe an architecture that provides the opportunity to communicate with and eventually control the physical setup of a remote metrology system. We show that such a concept can be implemented within cloud-computing environments, and may extend their current performance by the access to experimental facilities.