The choice of basis set in quantum chemical calculations can have a huge impact on the quality of the results, especially for correlated ab initio methods. This article provides an overview of the development of Gaussian basis sets for molecular calculations, with a focus on four popular families of modern atom-centered, energy-optimized bases: atomic natural orbital, correlation consistent, polarization consistent, and def2. The terminology used for describing basis sets is briefly covered, along with an overview of the auxiliary basis sets used in a number of integral approximation techniques and an outlook on possible future directions of basis set design.