A family of segmented all-electron relativistically contracted (SARC) basis sets for the elements Hf-Hg is constructed for use in conjunction with the Douglas-Kroll-Hess (DKH) and zeroth-order regular approximation (ZORA) scalar relativistic Hamiltonians. The SARC basis sets are loosely contracted and thus offer computational advantages compared to generally contracted relativistic basis sets, while their sufficiently small size allows them to be used in place of effective core potentials (ECPs) for routine studies of molecules. Practical assessments of the SARC basis sets in DFT calculations of atomic (ionization energies) as well as molecular properties (geometries and bond dissociation energies for MHn complexes) confirm that the basis sets yield accurate and reliable results, providing a balanced description of core and valence electron densities. CCSD(T) calculations on a series of gold diatomic compounds also demonstrate the applicability of the basis sets to correlated methods. The SARC basis sets will be of most utility in calculating molecular properties for which the core electrons cannot be neglected, such as studies of electron paramagnetic resonance, Mössbauer and X-ray absorption spectra, and topological analysis of electron densities.
Using models derived from the X-ray structure of photosystem II, it is shown that the oxygen evolving complex in the S(2) state exists in two energetically similar and interconvertible forms. A longstanding question regarding the spectroscopy of the catalyst is thus answered: one form corresponds to the multiline g=2.0 EPR signal (see picture, right; O red, Mn purple, Ca yellow), and the other to the g≥4.1 signals (left).
The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor.
Photosystem II (PSII), a multisubunit pigment-protein supercomplex found in cyanobacteria, algae, and plants, catalyzes a unique reaction in nature: the light-driven oxidation of water. Remarkable recent advances in the structural analysis of PSII now give a detailed picture of the static supercomplex on the molecular level. These data provide a solid foundation for future functional studies, in particular the mechanism of water oxidation and oxygen release. The catalytic core of the PSII is a tetramanganese-calcium cluster (Mn₄O₅Ca), commonly referred to as the oxygen-evolving complex (OEC). The function of the OEC rests on its ability to cycle through five metastable states (Si, i = 0-4), transiently storing four oxidizing equivalents, and in so doing, facilitates the four electron water splitting reaction. While the latest crystallographic model of PSII gives an atomic picture of the OEC, the exact connectivity within the inorganic core and the S-state(s) that the X-ray model represents remain uncertain. In this Account, we describe our joint experimental and theoretical efforts to eliminate these ambiguities by combining the X-ray data with spectroscopic constraints and introducing computational modeling. We are developing quantum chemical methods to predict electron paramagnetic resonance (EPR) parameters for transition metal clusters, especially focusing on spin-projection approaches combined with density functional theory (DFT) calculations. We aim to resolve the geometric and electronic structures of all S-states, correlating their structural features with spectroscopic observations to elucidate reactivity. The sequence of manganese oxidations and concomitant charge compensation events via proton transfer allow us to rationalize the multielectron S-state cycle. EPR spectroscopy combined with theoretical calculations provides a unique window into the tetramangenese complex, in particular its protonation states and metal ligand sphere evolution, far beyond the scope of static techniques such as X-ray crystallography. This approach has led, for example, to a detailed understanding of the EPR signals in the S₂-state of the OEC in terms of two interconvertible, isoenergetic structures. These two structures differ in their valence distribution and spin multiplicity, which has important consequences for substrate binding and may explain its low barrier exchange with solvent water. New experimental techniques and innovative sample preparations are beginning to unravel the complex sequence of substrate uptake/inclusion, which is coupled to proton release. The introduction of specific site perturbations, such as replacing Ca²⁺ with Sr²⁺, provides discrete information about the ligand environment of the individual Mn ions. In this way, we have identified a potential open coordination site for one Mn center, which may serve as a substrate binding site in the higher S-states, such as S₃ and S₄. In addition, we can now monitor the binding of the substrate water in the lower S-states (S₁ and S₂) using new EPR-detected N...
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.