2003
DOI: 10.1016/s0304-3975(02)00847-2
|View full text |Cite
|
Sign up to set email alerts
|

Almost periodic sequences

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
29
0
20

Year Published

2006
2006
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 35 publications
(49 citation statements)
references
References 8 publications
0
29
0
20
Order By: Relevance
“…[18,19,25,33,43,44] An R k -valued sequence x = {x(t)} t∈Z + is called Bohr almost periodic if for each ε > 0, there exists a positive integer T 0 (ε) such that among any T 0 (ε) consecutive integers, there exists at least one integer τ with the following property:…”
Section: Preliminariesmentioning
confidence: 99%
“…[18,19,25,33,43,44] An R k -valued sequence x = {x(t)} t∈Z + is called Bohr almost periodic if for each ε > 0, there exists a positive integer T 0 (ε) such that among any T 0 (ε) consecutive integers, there exists at least one integer τ with the following property:…”
Section: Preliminariesmentioning
confidence: 99%
“…Стоит заметить, что в [3] было рассмотрено расширение класса строго почти периодических последовательностей -класс почти периодических последовательно-стей (определение см. ниже).…”
unclassified
“…В [3] было доказано следующее утверждение: если F -конечный автомат, ω -почти периодическая последовательность, то F (ω) тоже почти периодическая.…”
unclassified
See 2 more Smart Citations