The current understanding of ciliate phylogeny is mainly based on analyses of a single gene, the small subunit ribosomal RNA (SSU-rDNA). However, phylogenetic trees based on single gene sequence are not reliable estimators of species trees, and SSU-rDNA genealogies are not useful for resolution of some branches within Ciliophora. Since congruence between multiple loci is the best tool to determine evolutionary history, we assessed the usefulness of alpha-tubulin gene, a protein-coding gene that is frequently sequenced, for ciliate phylogeny. Here, we generate alpha-tubulin gene sequences of 12 genera and 30 species within the order Euplotida, one of the most frequently encountered ciliate clades with numerous apparently cosmopolitan species, as well as four genera within its putative sister order Discocephalida. Analyses of the resulting data reveal that: 1) the alpha-tubulin gene is suitable phylogenetic marker for euplotids at the family level, since both nucleotide and amino acid phylogenies recover all monophyletic euplotid families as defined by both morphological criteria and SSU-rDNA trees; however, alpha-tubulin gene is not a good marker for defining species, order and subclass; 2) for seven out of nine euplotid species for which paralogs are detected, gene duplication appears recent as paralogs are monophyletic; 3) the order Euplotida is non-monophyletic, and the family Uronychiidae with sequences from four genera, is non-monophyletic; and 4) there is more genetic diversity within the family Euplotidae than is evident from dargyrome (geometrical pattern of dorsal “silverline system” in ciliates) patterns, habit and SSU-rDNA phylogeny, which indicates the urgent need for taxonomic revision in this area.