Stem cells have been used routinely for more than three decades to repair tissues and organs damaged by injury or disease, most notably haematopoietic stem cells taken from bone marrow, umbilical cord or, increasingly, from peripheral blood. Other examples, such as grafts of skin to treat severe burns, entail transplantation of stem cells within organized tissue rather than following isolation. The prospect of exploiting stem cells more widely in regenerative medicine was encouraged both by the development of human assisted conception and growing evidence that various adult cells retained greater versatility than had been suspected hitherto. The aim is to employ stem cells as a source of appropriately differentiated cells to replace those lost through physical, chemical or ischaemic injury, or as a result of degenerative disease. This may entail transplantation of just a single type of cell or, more challengingly, require a complex of several different types of cells possessing a defined architecture. Cardiomyocytes, hepatocytes or neuronal cells producing specific transmitters offer promising examples of the former, although how transplanted healthy cells will function in a perturbed tissue environment remains to be established. Recent success in repairing urinary bladder defects with grafts of urothelial and muscle cells seeded on a biodegradable collagen scaffold is an encouraging step towards assembling organs in vitro. Nevertheless, this is still far removed from the level of sophistication required to counter the ever increasing shortfall in supply of kidneys for transplantation. Various problems must be addressed if recent advances in the laboratory are to be translated into clinical practice. In many cases, it has yet to be established that cells derived from adults that retain plasticity are actually stem cells. There is also a pressing need for appropriate assays to ensure that, regardless of source, stem cells maintained in vitro are safe to transplant. Assays currently available for human ES cells are far from ideal. It is, in addition, important to ensure that differentiated cultures are pure and, depending on whether cell renewal is required or to be avoided, retain or lack appropriate stem cells. Neither autografts nor those obtained by so-called 'therapeutic cloning' are options for treating condition with an obvious genetic basis. Moreover, claims that some stem cells are more likely than others to yield successful allografts have yet to be confirmed and explained.