Although in situ hybridization studies have revealed the presence of kainate receptor (KAR) mRNA in neurons of the rat medial entorhinal cortex (mEC), the functional presence and roles of these receptors are only beginning to be examined. To address this deficiency, whole cell voltage clamp recordings of locally evoked EPSCs were made from mEC layer II and III neurons in combined entorhinal cortex -hippocampal brain slices. Three types of neurons were identified by their electroresponsive membrane properties, locations, and morphologies: stellate-like "Sag" neurons in layer II (S), pyramidal-like "No Sag" neurons in layer III (NS), and "Intermediate Sag" neurons with varied morphologies and locations (IS). Non-NMDA EPSCs in these neurons were composed of two components, and the slow decay component in NS neurons had larger amplitudes and contributed more to the combined EPSC than did those observed in S and IS neurons. This slow component was mediated by KARs and was characterized by its resistance to either GYKI 52466 (100 μM) or NBQX (1 μM), relatively slow decay kinetics, and sensitivity to CNQX (10-50 μM). KAR mediated EPSCs in pyramidal-like NS neurons contributed significantly more to the combined non-NMDA EPSC than did those from S and IS neurons. Layer III neurons of the mEC are selectively susceptible to degeneration in human temporal lobe epilepsy (TLE) and animal models of TLE such as kainate-induced status epilepticus. Characterizing differences in the complement of postsynaptic receptors expressed in injury prone versus injury resistant mEC neurons represents an important step toward understanding the vulnerability of layer III neurons seen in TLE.