L-glutamate, the neurotransmitter of the majority of excitatory synapses in the brain, acts on three classes of ionotropic receptors: NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptors. Little is known about the physiological role of kainate receptors because in many experimental situations it is not possible to distinguish them from AMPA receptors. Mice with disrupted kainate receptor genes enable the study of the specific role of kainate receptors in synaptic transmission as well as in the neurotoxic effects of kainate. We have now generated mutant mice lacking the kainate-receptor subunit GluR6. The hippocampal neurons in the CA3 region of these mutant mice are much less sensitive to kainate. In addition, a postsynaptic kainate current evoked in CA3 neurons by a train of stimulation of the mossy fibre system is absent in the mutant. We find that GluR6-deficient mice are less susceptible to systemic administration of kainate, as judged by onset of seizures and by the activation of immediate early genes in the hippocampus. Our results indicate that kainate receptors containing the GluR6 subunit are important in synaptic transmission as well as in the epileptogenic effects of kainate.
Functional NMDA receptors are heteromultimeric complexes of the NR1 subunit in combination with at least one of the four NR2 subunits (A-D). Coexpression of NR3A, an additional subunit of the NMDA receptor family, modifies NMDA-mediated responses. It is unclear whether NR3A interacts directly with NR1 and/or NR2 subunits and how such association might regulate the intracellular trafficking and membrane expression of NR3A. Here we show that NR3A coassembles with NR1-1a and NR2A to form a receptor complex with distinct singlechannel properties and a reduced relative calcium permeability. NR3A associates independently with both NR1-1a and NR2A in the endoplasmic reticulum, but only heteromeric complexes containing the NR1-1a NMDA receptor subunit are targeted to the plasma membrane. Homomeric NR3A complexes or complexes composed of NR2A and NR3A were not detected on the cell surface and are retained in the endoplasmic reticulum. Coexpression of NR1-1a facilitates the surface expression of NR3A-containing receptors, reduces the accumulation of NR3A subunits in the endoplasmic reticulum, and induces the appearance of intracellular clusters where both subunits are colocalized. Our data demonstrate a role for subunit oligomerization and specifically assembly with the NR1 subunit in the trafficking and plasma membrane targeting of the receptor complex.
A key step in glutamatergic synapse maturation is the replacement of developmentally expressed N-methyl-D-aspartate receptors (NMDARs) with mature forms that differ in subunit composition, electrophysiological properties and propensity to elicit synaptic plasticity. However, the mechanisms underlying the removal and replacement of synaptic NMDARs are poorly understood. Here we demonstrate that NMDARs containing the developmentally regulated NR3A subunit undergo rapid endocytosis from the dendritic plasma membrane in cultured rat hippocampal neurons. This endocytic removal is regulated by PACSIN1/syndapin1, which directly and selectively binds the carboxy-terminal domain of NR3A through its NPF motifs and assembles a complex of proteins including dynamin and clathrin. Endocytosis of NR3A by PACSIN1 is activity dependent, and disruption of PACSIN1 function causes NR3A accumulation at synaptic sites. Our results reveal a new activity-dependent mechanism involved in the regulation of NMDAR expression at synapses during development, and identify a brain-specific endocytic adaptor that confers spatiotemporal and subunit specificity to NMDAR endocytosis.Stabilization and maturation of synapses is central to neural circuit formation. During development, excitatory synapses in the central nervous system are remodeled in response to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.