Copy-number variants (CNVs) are a major source of genetic variation in human health and disease. Previous studies have implicated replication stress as a causative factor in CNV formation. However, existing data are technically limited in the quality of comparisons that can be made between human CNVs and experimentally induced variants. Here, we used two high-resolution strategies-single nucleotide polymorphism (SNP) arrays and mate-pair sequencing-to compare CNVs that occur constitutionally to those that arise following aphidicolin-induced DNA replication stress in the same human cells. Although the optimized methods provided complementary information, sequencing was more sensitive to small variants and provided superior structural descriptions. The majority of constitutional and all aphidicolininduced CNVs appear to be formed via homology-independent mechanisms, while aphidicolin-induced CNVs were of a larger median size than constitutional events even when mate-pair data were considered. Aphidicolin thus appears to stimulate formation of CNVs that closely resemble human pathogenic CNVs and the subset of larger nonhomologous constitutional CNVs. I N recent years, submicroscopic structural variants (SVs) have been found to be widely distributed throughout the human genome where they represent an important component of genetic variation and phenotypic diversity (Iafrate et al. 2004;Sebat et al. 2004;Sharp et al. 2005;Conrad et al. 2010b). These include deletions, duplications, insertions, and inversions, with the majority being copy-number variations (CNVs) discovered in systematic studies using microarrays (Conrad et al. 2010b;. More than 10,000 CNVs have now been described in healthy individuals that represent gains or losses of $1 kb to .1 Mb. CNVs can alter gene expression in affected regions, confer redundancy, and provide substrates for evolution. Spontaneous CNVs are also known to be a major cause of genetic and developmental disorders, including mental retardation, autism, schizophrenia, epilepsy, skeletal defects, and many others (Stankiewicz and Beaudet 2007;Cook and Scherer 2008;Kirov et al. 2009;Tam et al. 2009;Zhang et al. 2009;Miller et al. 2010). Systematic studies of human population CNVs have provided further correlation to human conditions including Crohn's disease, rheumatoid arthritis, and diabetes (Craddock et al. 2010). Related systematic efforts have finally also revealed a high degree of submicroscopic chromosomal structural alterations in cancer (Stratton et al. 2009;Bignell et al. 2010).Despite their importance, there is limited understanding of how SVs arise (Hastings et al. 2009b;Stankiewicz and Lupski 2010). The exceptions are local genome rearrangements that occur by unequal recombination between neighboring low-copy repeated sequences or segmental duplications, a process known as non-allelic homologous recombination (NAHR) (Sasaki et al. 2010). Such events are well described and underlie the specific recurrent alterations responsible for a variety of human microdeletion sy...