Gene expression studies in aquaculture have slowly evolved from the traditional reductionist approach of single gene sequencing to high throughput sequencing (HTS) techniques able to sequence entire genomes of living organisms. The upcoming of HTS techniques has led to emergence of metagenomics, nutrigenomics, epigenetics and other omics technologies in aquaculture in the last decade. Metagenomics analyses have accelerated the speed at which emerging pathogens are being discovered, thereby contributing to the design of timely disease control strategies in aquaculture. Using metagenomics, it is easy to identify and monitor microbial communities found in diferent ecosystems. In vaccine production, genomic studies are being used to identify cross neutralizing antigens against variant strains of the same pathogens. In genetics and epigenetics, genomics traits have been identiied that are beginning to gain commercial applications in aquaculture. Nutrigenomics have not only enhanced our understanding of the biological markers for nutrition-related diseases, but they have also enhanced our ability to formulate diets able to maintain a stable immune homeostasis in the gut. Overall, herein, we have shown that functional genomics provide multifaceted applications ranging from monitoring microbial communities in aquatic environments to optimizing production systems in aquaculture.