The combination of photodynamic therapy (PDT) and chemotherapy holds great potential in combating drug-resistant cancers. However, the major challenge that lies ahead is how to achieve high coloading capacity for both photosensitizer and chemo-drugs and how to gain efficient delivery of drugs to the drug-resistant tumors. In this study, we prepared a nanovehicle for codelivery of photosensitizer (pyropheophorbide-a, PPa) and chemo-drugs (paclitaxel, PTX) based on the synthesis of PPa-conjugated amphiphilic copolymer PPa-PLA-PEG-PLA-PPa. The obtained nanoparticles (PP NP) exhibited a satisfactory high drug-loading capacity for both drugs. To achieve effective tumor-targeting therapy, the surface of PP NP was decorated with a tumor-homing and penetrating peptide F3. In vitro cellular experiments showed that F3-functionalized PP NP (F3-PP NP) exhibited higher cellular association than PP NP and resulted in the strongest antiproliferation effect. In addition, compared with the unmodified nanoparticles, F3-PP NP exhibited a more preferential enrichment at the tumor site. Pharmacodynamics evaluation in vivo demonstrated that a longer survival time was achieved by the tumor-bearing mice treated with PP NP (+laser) than those treated with chemotherapy only or PDT only. Such antitumor efficacy of combination therapy was further improved following the F3 peptide functionalization. Collectively, these results suggested that targeted combination therapy may pave a promising way for the therapy of drug-resistant tumor.