Aluminum (Al) toxicity is one of the major constrains for wheat production in many wheat growing areas worldwide. Further understanding of inheritance of Al resistance may facilitate improvement of Al resistance of wheat cultivars (Triticum aestivum L.). A set of ditelosomic lines derived from the moderately Alresistant wheat cultivar Chinese Spring was assessed for Al resistance. The root growth of ditelosomic lines DT5AL, DT7AL, DT2DS and DT4DS was significantly lower than that of euploid Chinese Spring under Al stress, suggesting that Al-resistance genes might exist on the missing chromosome arms of 5AS, 7AS, 2DL and 4DL of Chinese Spring. A population of recombinant inbred lines (RILs) from the cross Annong 8455 Â Chinese Spring-Sumai 3 7A substitution line was used to determine the effects of these chromosome arms on Al resistance. A genetic linkage map consisting of 381 amplified fragment length polymorphism (AFLP) markers and 168 simple sequence repeat (SSR) markers was constructed to determine the genetic effect of the quantitative trait loci (QTLs) for Al resistance in Chinese Spring. Three QTLs, Qalt.pser-4D, Qalt.pser-5A and Qalt.pser-2D, were identified that enhanced root growth under Al stress, suggesting that inheritance of Al resistance in Chinese Spring is polygenic. The QTL with the largest effect was flanked by the markers of Xcfd23 and Xwmc331 on chromosome 4DL and most probably is multi-allelic to the major QTL identified in Atlas 66. Two additional QTLs, Qalt.pser-5A and Qalt.pser-2D on chromosome 5AS and 2DL, respectively, were also detected with marginal significance in the population. Some SSR markers identified in this study would be useful for marker-assisted pyramiding of different QTLs for Al resistance in wheat cultivars.Abbreviations: AFLP -amplified fragment length polymorphism; Al -Aluminum; DT -ditelosomic line; QTL -quantitative trait locus; RILs -recombinant inbred lines; SSR -simple sequence repeat