This version is available at https://strathprints.strath.ac.uk/60604/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Using a transamination approach to access novel Fe(II) complexes, this study presents the synthesis, X-ray crystallographic and magnetic characterisation of a series of new iron complexes containing the multifunctional 2,2-dipyridylamide (DPA) ligand using iron bis(amide) [{Fe(HMDS)2}2] and sodium ferrate [{NaFe(HMDS)3} ] (1) as precursors (HMDS = 1,1,1,3,3,3hexamethyldisilazide). Reactions of DPA(H) with 1 show exceptionally good stoichiometric control, allowing access to heteroleptic [(THF)2·NaFe(DPA)(HMDS)2] (3) and homoleptic [{THF·NaFe(DPA)3} ] (4) by using 1 and 3 equivalents of DPA(H) respectively. Linking this methodology and co-complexation, which is a more widely used approach to prepare heterobimetallic complexes, 3 can also be prepared by combining NaHMDS with heteroleptic [{Fe(DPA)(HMDS)}2] (2). In turn, 2 has been also synthesised and structurally defined by reacting [{Fe(HMDS)2}2] with two equivalents of DPA(H). Structural studies demonstrate the coordination flexibility of the N-bridged bis(heterocycle) ligand DPA, with 2 and 3 exhibiting discrete monomeric motifs, whereas 4 displays a much more intricate supramolecular structure, with one of its DPA ligands coordinating in an anti/anti fashion (as opposed to 2 and 3 where DPA shows a syn/syn conformation), which facilitates propagation of the structure via its central amido N. Magnetic studies confirmed the high-spin electron configuration of the iron(II) centres in all three compounds and revealed the existence of weak ferromagnetic interactions in dinuclear compound 2 (J = 1.01 cm -1 ).
Journal Name
ARTICLE