The distribution of Acacia dealbata Link (Fabaceae) in its non-native range is associated with disturbed areas. However, the possibility that it can penetrate the native forest during the invasion process cannot be ruled out. This statement is supported by the fact that this species has been experimentally established successfully under the canopy of native forest. Nonetheless, it is unknown whether A. dealbata can express shade tolerance traits to help increase its invasive potential. We investigated the shade tolerance of A. dealbata under the canopy of two native forests and one non-native for three consecutive years, as well as its early growth and photosynthetic performance at low light intensities (9, 30, and 70 μmol m−2sec−1) under controlled conditions. We found many A. dealbata plants surviving and growing under the canopy of native and non-native forests. The number of plants of this invasive species remained almost constant under the canopy of native forests during the years of study. However, the largest number of A. dealbata plants was found under the canopy of non-native forest. In every case, the distribution pattern varied with a highest density of plants in forest edges decreasing progressively toward the inside. Germination and early growth of A. dealbata were slow but successful at three low light intensities tested under controlled conditions. For all tested light regimes, we observed that in this species, most of the energy was dissipated by photochemical processes, in accordance with the high photosynthetic rates that this plant showed, despite the really low light intensities under which it was grown. Our study reveals that A. dealbata expressed shade tolerance traits under the canopy of native and non-native forests. This behavior is supported by the efficient photosynthetic performance that A. dealbata showed at low light intensities. Therefore, these results suggest that Mediterranean forest ecosystems of South America can become progressively invaded by A. dealbata and provide a basis for estimating the possible impacts that this invasive species can cause in these ecosystems in a timescale.