Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, rhizobia, arbuscular mycorrhizal fungi, and Trichoderma, can reduce the use of agrochemicals and increase plant yield, nutrition, and tolerance to biotic–abiotic stresses. Yet, large-scale applications of PBM have been hampered by the high amounts of inoculum per plant or per cultivation area needed for successful colonization and consequently the economic feasibility. Seed coating, a process that consists in covering seeds with low amounts of exogenous materials, is gaining attention as an efficient delivery system for PBM. Microbial seed coating comprises the use of a binder, in some cases a filler, mixed with inocula, and can be done using simple mixing equipment (e.g., cement mixer) or more specialized/sophisticated apparatus (e.g., fluidized bed). Binders/fillers can be used to extend microbial survival. The most reported types of seed coating are seed dressing, film coating, and pelleting. Tested in more than 50 plant species with seeds of different dimensions, forms, textures, and germination types (e.g., cereals, vegetables, fruits, pulses, and other legumes), seed coating has been studied using various species of plant growth-promoting bacteria, rhizobia, Trichoderma, and to a lesser extent mycorrhizal fungi. Most of the studies regarding PBM applied via seed coating are aimed at promoting crop growth, yield, and crop protection against pathogens. Studies have shown that coating seeds with PBM can assist crops in improving seedling establishment and germination or achieving high yields and food quality, under reduced chemical fertilization. The right combination of biological control agents applied via seed coating can be a powerful tool against a wide number of diseases and pathogens. Less frequently, studies report seed coating being used for adaptation and protection of crops under abiotic stresses. Notwithstanding the promising results, there are still challenges mainly related with the scaling up from the laboratory to the field and proper formulation, including efficient microbial combinations and coating materials that can result in extended shelf-life of both seeds and coated PBM. These limitations need to be addressed and overcome in order to allow a wider use of seed coating as a cost-effective delivery method for PBM in sustainable agricultural systems.
Key message The above-and belowground impacts due to Acacia invasions have been described in detail over the last 25 years. Future research should focus on the early detection and prevention of new Acacia introductions and on a cost-effective and sustainable management of the novel ecosystems resulting from invasions.• Context Invasive alien plants (IAPs) strongly alter ecosystems reducing biodiversity, modifying ecosystem services and increasing negative impacts at social and economic level. Among invasive taxa, Acacia is a highly problematic genus worldwide. In fact, almost 500 papers have been published on several aspects of Acacia invasions for the last 25 years.• Aims We aim at reviewing the current knowledge on the consequences of the invasion by Acacia genus in Mediterranean ecosystems. We also collect and propose different approaches for the management and recovery of invaded areas and suggest future perspectives on Acacia research. • Methods We compile, summarise and discuss recent findings on physicochemical, ecological, microbiological and socioeconomic aspects of invasion related to Australian acacias (Acacia dealbata, Acacia longifolia, Acacia mearnsii, Acacia saligna and Acacia melanoxylon) focusing on Mediterranean areas.• Results Acacia invasion generally entails soil physicochemical alterations and changes in microbial function and structure. Consequences such as the decreased biodiversity, altered ecosystem structure, larger seed banks dominated by invasive species, new biotrophic relationships or alterations in water availability and fire regimes suggest that acacias are locally creating novel ecosystems.• Conclusions Forecasting invasions, modelling and managing ecosystems dominated by acacias are challenging tasks that should be addressed in the future, since climatic conditions and intensification in land uses are increasing the likelihood of Acacia invasions in Mediterranean areas. Unsuccessful management actions suggest that restoration should be meticulously monitored, but the magnitude of invasion or the inconsistency of economic investment indicate that eradication is often unfeasible. Alternatively, novel integrative and cost-effective solutions including the collaboration of society, politicians and stakeholders are necessary to prevent new introductions and achieve sustainable control of acacias. There is a growing interest in applied research on the valorisation or novel uses for acacias and their residues that result in economic benefits.
A critical outcome of the invasive processes of exotic plants is the impact on soil microbial communities and chemical parameters. We studied the impact of Acacia dealbata on soils of mixed forests and shrublands. We hypothesized that A. dealbata can alter soil microbial community function and soil chemical profile in invaded ecosystems. Two sampling dates were selected depending on the phenological stage of A. dealbata (vegetative vs. reproductive).Soil chemical parameters were deeply modified in the invaded sites. Total C and N, P, K, Ca, Mg, NO 3 À and NH 4 þ content and available P, were significantly higher in invaded soils of both mixed forests and shrublands. Soil microbial community activities were affected by the sampling date, soil type and ecosystem. Enzymatic activities mainly varied in soils collected during the vegetative stage of A. dealbata in mixed forests and during both vegetative and reproductive stages in shrublands. Soils invaded by A. dealbata showed increased acid phosphatase, b-glucosidase and N-acetyl glucosaminidase activities and the geometrical mean of these activities. Soil basal respiration was significantly reduced in invaded patches of mixed forests. Our results showed an alteration of soil chemistry and microbial community function related to A. dealbata presence, probably leading to acceleration in the decomposition and mineralization rates.
Acacia dealbata Link is a widespread invader in Mediterranean type ecosystems, and traits promoting its invasiveness are currently under investigation. Due to the dense atmosphere below its canopy, we hypothesized that volatile organic compounds (VOCs) released from flowers, leaves, litter, or a mixture of treatments exert inhibitory effects on the natives Trifolium subterraneum, Lolium multiflorum, Medicago sativa, and also on its own seeds. We reported that VOCs from flowers significantly reduced germination in L. multiflorum and A. dealbata; moreover, root length, stem length, aboveground and belowground biomass were also reduced in all species studied. Volatile organic compounds from flowers and the mixture also increased significantly malondialdehyde content in T. subterraneum and L. multiflorum. The effects of VOCs on antioxidant enzymatic activities were species dependent. Flowers enhanced peroxidase but decreased superoxide dismutase activity in T. subterraneum. In contrast, VOCs released from leaves increased the activity of superoxide dismutase in L. multiflorum. GC/MS analyses revealed 27 VOCs in the volatile fraction from flowers, 12 of which were exclusive to this fraction. Within them, heptadecadiene, n-nonadecane, n-tricosane, and octadecene represent 62% of the fraction. We present evidence that the VOCs released from A. dealbata flowers strongly inhibited germination and seedling growth of selected species, and mainly on its own seedlings. As far as we know, this is the first evidence of phytotoxicity induced by VOCs in invasive species belonging to the Acacia genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.