Economic development and fast growing urbanization in China have caused severe air pollution, with frequent pollution episodes endangering the health of inhabitants and disturbing social activities, and as an expanding metropolis, Chengdu has suffered ever since. The concentration variations of main air pollutants, such as PM10, PM2.5 and NO2, often show periodicity because of meteorological impact and anthropic activities, and display orientation discrepancies due to influences of wind speed (WS), frequency and pollutant sources. These features have complicated the mechanisms of pollution episodes and deepened the difficulty in pollution control evaluation. The WS has significant influences on the periodicity and orientation variations in pollutant concentrations, and quantifying the influence of which is of high significance and provides sustainable foundations for pollution alleviation strategies. Different time-scale cycles (i.e., Diurnal, weekly, seasonal and annual), along with the WS, wind frequency, wind and spatial orientations in urban areas, were analyzed in this paper. Results show that the periodicity of diurnal, seasonal and annual cycles is remarkable, and weekly cycle is obvious by adding the influence of the WS in 16 orientations. The WS has direct impacts on pollutants varying in the range of 1.5–2.5 m/s, and has a remarkable diffusion effect on pollutants once above 2.5 m/s. Over heavy pollution hours in diurnal, weekly, annual cycles and transitional seasons, the WS had more significant influences on pollutants, and whereas the wind frequency is not the main impact factor for orientation variations. For Chengdu, the northeast orientation is suitable to construct a wind panel with a remarkable diffusion effect on pollutants, while air pollutions in the northwest and southwest orientations were severe with the WS below 1.5 m/s, and pollution diffusion in the north-northwest orientation was the worst. This work can provide guidance and reference for urban planning optimization and air environment protection in cities with air quality control considerations impacted by city wind.