We demonstrate a light-emitting organic field-effect transistor (OFET) with pronounced ambipolar current characteristics. The ambipolar transport layer is a coevaporated thin film of α-quinquethiophene (α-5T) as hole-transport material and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) as electron-transport material. The light intensity is controlled by both the drain–source voltage VDS and the gate voltage VG. Moreover, the latter can be used to adjust the charge-carrier balance. The device structure serves as a model system for ambipolar light-emitting OFETs and demonstrates the general concept of adjusting electron and hole mobilities by coevaporation of two different organic semiconductors.