2005
DOI: 10.7202/705351ar
|View full text |Cite
|
Sign up to set email alerts
|

Amélioration des performances d'un modèle stochastique de génération de hyétogrammes horaires: application au pourtour méditerranéen français

Abstract: Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter en ligne. Reçu le 23 janvier 1998, accepté le 13 janvier 1999**. SUMMARYA stochastic mode] for generating hourly hyetographs has been recently developed, in the Cemagref of Aix-en-Provence, to be coupled with a rainfall runoff conversion modelling. Thus, by simulation of very long periods (1000 years for example), we obta… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
3

Year Published

2005
2005
2016
2016

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 8 publications
(13 citation statements)
references
References 3 publications
0
10
0
3
Order By: Relevance
“…However, the threshold intensity is overestimated. This result can be explained by an underestimate of the hydrological response by the forced distributed models with uniform rainfall (Arnaud et al, 1999;Tramblay et al, 2010): the spatial and/or temporal information for the precipitation is not negligible. The direct hydrological model (I MARINE ) performs significantly better than the FFG method.…”
Section: Assessment Of the Ffg Methodsmentioning
confidence: 95%
See 1 more Smart Citation
“…However, the threshold intensity is overestimated. This result can be explained by an underestimate of the hydrological response by the forced distributed models with uniform rainfall (Arnaud et al, 1999;Tramblay et al, 2010): the spatial and/or temporal information for the precipitation is not negligible. The direct hydrological model (I MARINE ) performs significantly better than the FFG method.…”
Section: Assessment Of the Ffg Methodsmentioning
confidence: 95%
“…In contrast, however, other articles highlight the importance of spatial forcing variability in generating flash floods (Arnaud et al, 1999;Le Lay and Saulnier, 2007;Tramblay et al, 2010;Lobligeois, 2014;Morin and Yakir, 2014). Distributed hydrological models show significant improvements after including the local aspect of precipitation (Michaud and Sorooshian, 1994;Zoccatelli et al, 2010); and in particular, an increase in the likelihood criterion (Nash-Sutcliffe) of up to 30% (Zoccatelli et al, 2010).…”
Section: Introductionmentioning
confidence: 98%
“…Ce modèle part du principe que la pluie est un processus aléatoire et intermittent fait d'une succession d'états secs et pluvieux, dont l'évolution est décrite par des lois de nature stochastique. La génération du signal temporel de pluie est alors réalisée en deux étapes (ARNAUD et al, 1999). La première étape est l'étude descriptive du phénomène.…”
Section: Génération Des Pluies Horairesunclassified
“…Arnaud et al (1999) consider that the synthetic storm generation allows a new approach to study the asymptotic behavior of the probability distribution for the maximum rainfalls and to define design storms. Mehrotra and Sharma (2006) consider that the generated synthetic storms could be used in the reliability and risk analysis used for design and operation of hydraulic structures.…”
Section: Introductionmentioning
confidence: 99%
“…Cisneros et al (1998) developed a model that attempts to preserve the spatial structure of historical storms. Arnaud et al (1999) applied a stochastic generation model to data from the French coast, using a two-step scheme for the generation: the first step is a study of the variables that describe the phenomenon and its definition by probability distribution functions fitted to the observations, and the second is the creation of a rainfall time series using values of the descriptive variables generated randomly from their law of probability. When the model was extended to a larger area, it showed some limitations in the results; therefore, they developed an adaptation to the generation model, by fitting an exponential distribution to the values smaller than four times the mean of the variable.…”
Section: Introductionmentioning
confidence: 99%