A dequate learning capability is essential for survival and social adaptation of human, animals and birds. Young animals must learn many things rapidly such as escaping from predators (Heckman, 2007). Hence, learning impairment by neurodegenerative disease such as Alzheimer's disease (AD) may threaten animal life. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disorder which characterized by learning and memory impairments which caused by diminished level of acetylcholine, reduced biogenic amines, increased oxidative stress and antioxidant enzyme disturbance. In addition it characterized pathologically by brain size reduction, degeneration and death of hippocampal neurons, aggregations of senile amyloid plaques and tau proteins (Dobhal et al., 2013; Yin et al., 2013; Haider et al., 2014). Several In vivo studies were performed to assess the potential role of metals in the pathogenesis of AD, where an increase in aluminium (Al3+) and other metals concentrations were detected in several brain areas of rats administered aluminium chloride for six months (Fattoretti et al., 2004).