Photoluminescence and Raman spectroscopy are used to study the electronic properties of n-InP(100) surfaces passivated with different sulfide solutions. Such a passivation results in the increase in photoluminescence intensity of the semiconductor evidencing for the reduction in the surface recombination velocity. The increase in the photoluminescence intensity is accompanied by the narrowing of the surface depletion layer, as well as by the increase of the electron density in the probed volume of InP. The efficiency of electronic passivation of the n-InP(100) surface depends on the composition of the sulfide solution.