2020
DOI: 10.30812/varian.v4i1.849
|View full text |Cite
|
Sign up to set email alerts
|

Amount of Poverty as Policy Basis: A Forecasting Using The Holt Method

Abstract: This research aims to predict the growth of the number of poor people in every district and city in NTB Province of Indonesia for the next 10 years by using Holt exponential smoothing method. This type of research is quantitative research with input data used over the last 19 years with a measure of the goodness of models namely MSE, MAD, and MAPE. Based on the optimization results obtained the smallest parameter at α of 0.9 and β of 0.1, an average value MSE of 278005053.7, MAD of 9992.28222, and MAPE of 8.93… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2021
2021
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 6 publications
0
1
0
1
Order By: Relevance
“…The Holt smoothing method has the advantage of being able to analyze three components of the data pattern, namely providing greater weighting of the latest data, estimating trend patterns, and estimating seasonal patterns from the data so that it will produce forecasting with the smallest error rate [8]. Also, the Holt method can be used to predict the next few periods [9], unlike the Single Exponential Smoothing forecasting method that can only be used to forecast one period.…”
Section: Maricar (2019) Conduct Research On Moving Average Accuracy Value Comparison and Exponentialmentioning
confidence: 99%
“…The Holt smoothing method has the advantage of being able to analyze three components of the data pattern, namely providing greater weighting of the latest data, estimating trend patterns, and estimating seasonal patterns from the data so that it will produce forecasting with the smallest error rate [8]. Also, the Holt method can be used to predict the next few periods [9], unlike the Single Exponential Smoothing forecasting method that can only be used to forecast one period.…”
Section: Maricar (2019) Conduct Research On Moving Average Accuracy Value Comparison and Exponentialmentioning
confidence: 99%
“…Berdasarkan hasil simulasi data dari 10 metode yang diuji diketahui bahwa metode Holt paling akurat dengan hasil prediksi 2018 sama dengan 67.45 dengan MAD, MSE, dan MAPE masing-masing sama dengan 0,22654, 0,075955 dan 0,34829 (Sucipto & Syaharuddin, 2018). Prediksi jumlah penduduk miskin menggunakan metode Holt (Syaharuddin & Ahmad, 2020). Sedangkan metode ARIMA merupakan metode yang fleksibel untuk berbagai macam data deret waktu, termasuk untuk menghadapi fluktuasi (Darsyah, 2015), (Fejriani et al, 2020).…”
unclassified