2018 Detroit, Michigan July 29 - August 1, 2018 2018
DOI: 10.13031/aim.201801055
|View full text |Cite
|
Sign up to set email alerts
|

<i>Rapid detection of fruits in orchard scene based on deep neural network</i>

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 0 publications
0
2
0
1
Order By: Relevance
“…For example, Faster RCNN is popular for its good performance. It has been used to detect sweet pep- pers [8] and apples [9]. In addition, a Faster RCNN model for detecting varieties of fruits was constructed and trained [10].…”
Section: Introductionmentioning
confidence: 99%
“…For example, Faster RCNN is popular for its good performance. It has been used to detect sweet pep- pers [8] and apples [9]. In addition, a Faster RCNN model for detecting varieties of fruits was constructed and trained [10].…”
Section: Introductionmentioning
confidence: 99%
“…Different types of CNNs have been applied to detect a variety of fruits. Tao et al [18] adopted Faster RCNN to detect peaches, apples and oranges. In this study, two kinds of CNNs, ZFnet and VGG16, were used as the backbone network of Faster RCNN to detect all kinds of fruits mentioned above respectively and the detection precisions were all more than 90%.…”
Section: Introductionmentioning
confidence: 99%
“…Desde entonces, la bibliografía muestra que se ha continuado con el desarrollo de sistemas robóticos (Recce et al, 1996;Muscato et al, 2005;Bulanon et al, 2009;Mehta y Burks, 2014;Qiang et al, 2014). A su vez, se ha avanzado en los estudios relacionados con los sistemas de visión y la inteligencia artificial para solucionar uno de los principales problemas que se dan en este tipo de sistemas robóticos y es la dificultad para detectar la fruta en el árbol, bien por la semejanza de color entre la misma fruta y las hojas o por la oclusión parcial o total de la fruta (Annamalai et al, 2004;Kurtulmus et al, 2011;Sengupta y Lee, 2014;Choi et al, 2015;Chen et al, 2017;Peng et al, 2018;Tao et al, 2018;Pérez-Ruiz et al, 2021).…”
Section: Recolección Mecanizada De Cítricosunclassified