The complex topography of the species-rich northern Andes creates heterogeneous environmental landscapes that are hypothesized to have promoted population fragmentation and diversification by vicariance, gradients and/or the adaptation of species. Previous phylogenetic work on the Palm Rocket Frog (Anura: Aromobatidae: Rheobates spp.), endemic to mid-elevation forests of Colombia, suggested valleys were important in promoting divergence between lineages. In this study, we use a spatially, multi-locus population genetic approach of two mitochondrial and four nuclear genes from 25 samples representing the complete geographic range of the genus to delimit species and test for landscape effects on genetic divergence within Rheobates. We tested three landscape genetic models: isolation by distance, isolation by resistance, and isolation by environment. Bayesian species delimitation (BPP) and a Poisson Tree Process (PTP) model both recovered five highly divergent genetic lineages within Rheobates, rather than the three inferred in a previous study. We found that an isolation by environment provided the only variable significantly correlated with genetic distances for both mitochondrial and nuclear genes, suggesting that local adaptation may have a role driving the genetic divergence within this genus of frogs. Thus, genetic divergence in Rheobates may be driven by the local environments where these frogs live, even more so that by the environmental characteristics of the intervening regions among populations (i.e., geographic barriers).