In this article, cyanuric chloride (CC) and hexamethylenediamine (HMD) as raw material, the grafting of hyperbranched polytriazine onto reduced graphene oxide surface (HBP‐RGO) was achieved by the repeated nucleophilic substitution between chlorine groups of CC and amino groups of HMD, respectively. The Fourier transform infrared, X‐ray photoelectron spectroscopic, Raman, transmission electron microscopic, thermogravimetric, and atomic force microscopic analysis showed that HBP‐RGO had been successfully prepared and the HBP had a dendritic structure on the surface of RGO. And then, the HBP‐RGO was added into polystyrene (PS) and the HBP‐RGO/PS composite was prepared by solution mixing. The micro‐morphology, thermal stability, and electrical conductivity of RGO/PS and HBP‐RGO/PS composites were characterized and compared. The scanning electron microscopic analysis showed that the HBP‐RGO can uniformly disperse in PS. Meanwhile, the HBP‐RGO/PS composite showed good thermal stability and electrical conductivity, the percolation threshold of the composites is low as 0.32 vol %. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2132–2140