We present a semiempirical Hamiltonian that provides an accurate description of the first singlet and triplet potential energy surfaces of azobenzene for use in direct simulations of the excited-state dynamics. The parameterization made use of spectroscopic and thermochemical data and the best ab initio results available to date. Two-dimensional potential energy surfaces based on constrained geometry optimizations are presented for the states that are most relevant for the photochemistry of azobenzene, namely, S(0), S(1), and S(2). In order to run simulations of the photodynamics of azobenzene in hydrocarbons or hydroxylic solvents, we determined the interactions of methane and methanol with the azo group by ab initio calculations and fitted the interactions with a QM/MM interaction Hamiltonian.
BackgroundLatrophilins (LPHNs) are a small family of neuronal adhesion-GPCRs originally discovered as receptors for the black widow spider toxin α-latrotoxin. Mutations in LPHN3 have recently been identified as risk factors for attention deficit hyperactivity disorder (ADHD) in humans, but their physiological function has remained elusive. In this study, we tested two hypotheses regarding LPHN3 function: (1) LPHN3 regulates synaptic transmission by modulating probability of release; and (2) LPHN3 controls synapse development and the abundance of synapses.ResultsWe manipulated LPHN3 expression in mouse layer 2/3 (L2/3) pyramidal neurons and examined the consequences on the L2/3 to L5 cortical microcircuit. Employing an optogenetic strategy combined with shRNA knockdown of LPHN3, we found that LPHN3 did not influence probability of release at synapses formed by L2/3 neurons onto L5 pyramidal cells. The strength of L2/3 afferent input to L5, however, was weakened by loss of LPHN3. Using Synaptophysin-GFP as an anatomical marker of presynaptic terminals, we found that the density of synapses formed by L2/3 axons in L5 was reduced when LPHN3 was lost. Finally, we investigated the structural organization of the extracellular domain of LPHN3. We used single particle negative stain electron microscopy to image the extracellular domain of LPHN3 and showed that the Olfactomedin and Lectin domains form a globular domain on an elongated stalk. Cell-based binding experiments with mutant proteins revealed that the Olfactomedin domain was required for binding to FLRT3, whereas both the Olfactomedin and Lectin domains were involved in binding to Teneurin 1. Mutant LPHN3 lacking the Olfactomedin domain was not capable of rescuing the deficit in presynaptic density following knockdown of endogenous LPHN3.ConclusionsWe find that LPHN3 regulates the number of synapses formed by L2/3 neurons in L5 and the strength of synaptic drive from the L2/3-L5 pathway. The Olfactomedin domain of LPHN3 is required for this effect on synapse number and binding to its postsynaptic ligand FLRT3. We propose that LPHN3 functions in synaptic development and is important in determining the connectivity rates between principal neurons in the cortex.
Magnesium-based cement is one of the most interesting eco-sustainable alternatives to standard cementitious binders. The reasons for the interest towards this material are twofold: (i) its production process, using magnesium silicates, brine or seawater, dramatically reduces CO2 emissions with respect to Portland cement production, and (ii) it is very well suited to applications in radioactive waste encapsulation. In spite of its potential, assessment of the structural properties of its binder phase (magnesium silicate hydrate or M-S-H) is far from complete, especially because of its amorphous character. In this work, a comprehensive structural characterization of M-S-H was obtained using a multi-technique approach, including a detailed solid-state NMR investigation and, in particular, for the first time, quantitative (29)Si solid-state NMR data. M-S-H was prepared through room-temperature hydration of highly reactive MgO and silica fume and was monitored for 28 days. The results clearly evidenced the presence in M-S-H of "chrysotile-like" and "talc-like" sub-nanometric domains, which are approximately in a 1 : 1 molar ratio after long-time hydration. Both these kinds of domains have a high degree of condensation, corresponding to the presence of a small amount of silanols in the tetrahedral sheets. The decisive improvement obtained in the knowledge of M-S-H structure paves the way for tailoring the macroscopic properties of eco-sustainable cements by means of a bottom-up approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.