† These authors contributed equally to this work. 'Charge engineering' of semiconductor nanocrystals (NCs) through so-called electronic impurity doping is a long-lasting challenge in colloidal chemistry and holds promise for groundbreaking advancements in many optoelectronic, photonic and spin-based nanotechnologies. To date, our knowledge is limited to a few paradigmatic studies on a small number of model compounds and doping conditions, with important electronic dopants still unexplored in nanoscale systems. Equally importantly, fine tuning of charge engineered NCs is hampered by the statistical limitations of traditional approaches. The resulting intrinsic doping inhomogeneity restricts fundamental studies to statistically averaged behaviours and complicates the realization of advanced device concepts based on their advantageous functionalities. Here we aim to address these issues by realizing the first example of II-VI NCs electronically doped with an exact number of heterovalent gold atoms, a known p-type acceptor impurity in bulk chalcogenides. Single-dopant accuracy across entire NC ensembles is obtained through a novel non-injection synthesis employing ligand-exchanged gold clusters as 'quantized' dopant sources to seed the nucleation of CdSe NCs in organic media. Structural, spectroscopic and magneto-optical investigations trace a comprehensive picture of the physical processes resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time into II-VI NCs, are found to incorporate as nonmagnetic Au + species activating intense size-tuneable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au + to paramagnetic Au 2+ (5d 9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behaviour revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs. Altogether, our results demonstrate a new chemical approach towards NCs with physical functionalities tailored to the single impurity level and offer a versatile platform for future investigations and device exploitation of individual and collective impurity processes in quantum confined structures.