An optical phase multilevel recording technique using a microholographic system and phase-diversity homodyne detection for enhancement of optical disc capacity is investigated. In this technique, multilevel phase signals are stored as the fringe shifts along the optical axis and recovered from the arctangent of two homodyne-detected signals. For comparison, phase signals from Blu-ray Disc read-only memory (BD-ROM) and Blu-ray Disc recordable (BD-R) media obtained by phase-diversity homodyne detection are experimentally evaluated. From the experimental results, we demonstrated that phase-diversity homodyne detection is useful for detecting the phase signal modulation of the signal beam from an optical disc. Furthermore, simulation results on microholograms indicate that phase signals from the microholograms are much more stable despite the variety of their sizes than those from BD-ROM. These results demonstrate the potential of this multilevel recording method.