Amyloid-like aggregation of natural proteins or polypeptides is an important process involved in many human diseases as well as some normal biological functions. Plenty of works have been done on this ubiquitous phenomenon, but the molecular mechanism of amyloid-like aggregation has not been fully understood yet. In this study, we showed that a series of designer bolaamphiphilic peptides could undergo amyloid-like aggregation even though they didn't possess typical β-sheet secondary structure. Through systematic amino acid substitution, we found that for the self-assembling ability, the number and species of amino acid in hydrophobic section could be variable as long as enough hydrophobic interaction is provided, while different polar amino acids as the hydrophilic heads could change the self-assembling nanostructures with their aggregating behaviors affected by pH value change. Based on these results, novel self-assembling models and aggregating mechanisms were proposed, which might provide new insight into the molecular basis of amyloid-like aggregation.