The study of business process analysis and optimisation has attracted significant scholarly interest in the recent past, due to its integral role in boosting organisational performance. A specific area of focus within this broader research field is process mining (PM). Its purpose is to extract knowledge and insights from event logs maintained by information systems, thereby discovering process models and identifying process-related issues. On the other hand, statistical model checking (SMC) is a verification technique used to analyse and validate properties of stochastic systems that employs statistical methods and random sampling to estimate the likelihood of a property being satisfied. In a seamless business setting, it is essential to validate and verify process models. The objective of this paper is to apply the SMC technique in process mining for the verification and validation of process models with stochastic behaviour and large state space, where probabilistic model checking is not feasible. We propose a novel methodology in this research direction that integrates SMC and PM by formally modelling discovered and replayed process models and apply statistical methods to estimate the results. The methodology facilitates an automated and proficient evaluation of the extent to which a process model aligns with user requirements and assists in selecting the optimal model. We demonstrate the effectiveness of our methodology with a case study of a loan application process performed in a financial institution that deals with loan applications submitted by customers. The case study highlights our methodology’s capability to identify the performance constraints of various process models and aid enhancement efforts.