This review aims to investigate the recent advancements in the performance of earthquake-damaged reinforced concrete structures subjected to fire loading and the damages that are induced by fire to reinforced concrete structural elements with damage due to seismic loads. The first part of the paper provides a general understanding of the Post-Earthquake Fire (PEF) effect on reinforced concrete structures, and some statistics regarding the previous earthquake casualties and amounts of destruction in different regions of the world are addressed. In the second part of the investigation, an in-depth review of the experimental and numerical procedures of PEF analysis in concrete columns, beams, slabs, and full-scale RC frames and the types of damages in RC members due to PEF have been presented, giving a general review of the results and conclusions in previous research in PEF in different reinforced concrete structures. In the end is discussed the concept of hybrid fire simulation, its applications in engineering problems, the methodologies that consider full interaction effects as well as recent breakthroughs in studying PEF using Real-Time Hybrid Simulation.