2016
DOI: 10.3130/jaabe.15.557
|View full text |Cite
|
Sign up to set email alerts
|

An Adaptive Multi-objective Immune Algorithm for Optimal Design of Truss Structures

Abstract: In this paper, an adaptive immune clone selection algorithm for multi-objective optimization (AICSAMO) is proposed. A novel adaptive polynomial mutation operator with dynamic mutation probability is employed in AICSAMO. This adaptive mutation operator executes a rapid global search at the earlier stage of the algorithm and a fine-tuning search at the later stage of the algorithm, which adopts generation-dependent parameters to improve the convergence speed and global optimum searching ability. The effectivenes… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 26 publications
0
1
0
2
Order By: Relevance
“…In this section, we introduce the multi-objective immune algorithm (Xie et al, 2016) to solve the node deployment in WSN via sensor rearrangement in the sensing area to remit the coverage holes with limited mobility cost. Multi-objective optimisation refers to the process of simultaneously optimising two or more conflicting objectives subject to some given constraints.…”
Section: The Proposed Node Deployment Methods Based On Multi-objectivementioning
confidence: 99%
“…In this section, we introduce the multi-objective immune algorithm (Xie et al, 2016) to solve the node deployment in WSN via sensor rearrangement in the sensing area to remit the coverage holes with limited mobility cost. Multi-objective optimisation refers to the process of simultaneously optimising two or more conflicting objectives subject to some given constraints.…”
Section: The Proposed Node Deployment Methods Based On Multi-objectivementioning
confidence: 99%
“…Namun nilai nilai nm dapat berubah selama proses pencarian solusi disetiap iterasinya hal ini dilakukan untuk mengontrol besarnya nilai mutasi [10]. Begitupun dengan probabilitas mutasi (Pm) yang mengatur peluang banyaknya individu yang mengalami mutasi dalam satu populasi dibuat dinamis setiap iterasinya [11]. Optimasi pembentukan portofolio reksadana saham dengan algoritme multi objektif sebelumnya dilakukan dengan parameter algoritme genetika probabilitas crossover 0.65, probabilitas mutasi 0,05, generasi 400 dan populasi yang berjumlah 20 menghasilkan kombinasi portofolio terbaik untuk periode 24 bulan dengan susunan 20 portofolio [12].…”
Section: Pendahuluanunclassified
“…Semakin besar nilai Pm maka akan semakin banyak gen yang mengalami mutasi pada suatu popolasi. Untuk mengontrol banyaknya gen yang mengalami mutasi dapat dilakukan dengan membuat Pm dinamis [11]. Pm dinamis dilakukan dengan persamaan 7.…”
Section: Mutasi Adaptifunclassified