2018
DOI: 10.1007/s00285-018-1253-7
|View full text |Cite
|
Sign up to set email alerts
|

An age-structured epidemic model for the demographic transition

Abstract: In this paper, we formulate an age-structured epidemic model for the demographic transition in which we assume that the cultural norms leading to lower fertility are transmitted amongst individuals in the same way as infectious diseases. First, we formulate the basic model as an abstract homogeneous Cauchy problem on a Banach space to prove the existence, uniqueness, and well-posedness of solutions. Next based on the normalization arguments, we investigate the existence of nontrivial exponential solutions and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 17 publications
0
1
0
1
Order By: Relevance
“…Quoique encore incomplète d'un point de vue mathématique, notre étude est néanmoins plus précise que celle du modèle analogue de [19]. On a vu que même pour un système d'équations différentielles ordinaires homogènes, l'étude de la stabilité linéaire n'est pas triviale, tandis que la stabilité globale nous échappe encore.…”
Section: Discussionunclassified
“…Quoique encore incomplète d'un point de vue mathématique, notre étude est néanmoins plus précise que celle du modèle analogue de [19]. On a vu que même pour un système d'équations différentielles ordinaires homogènes, l'étude de la stabilité linéaire n'est pas triviale, tandis que la stabilité globale nous échappe encore.…”
Section: Discussionunclassified
“…However, this does not consider one patient, but rather takes a population-representative approach. There are model calculations that were, for example, already made in the early 1980s [19], and which show that there are demographic transitions that must be considered in the course of population development [20,21].…”
Section: Transition Models In Generalmentioning
confidence: 99%
“…Kuniya [16] studied the global asymptotic stability by discretizing the age-structured multigroup model. Inaba et al [17] established an age-structured model of epidemic spreading for the demographic transition and obtained the stability condition using reproduction numbers. So et al [18] derived the equation of a reaction-diffusion model for a single species population with the age structure.…”
Section: Introductionmentioning
confidence: 99%