This paper presents a modified susceptible-infected-recovered (SIR) model with the effects of awareness and vaccination to study the epidemic spreading on scale-free networks based on the mean-field theory. In this model, when susceptible individuals receive awareness from their infected neighbor nodes, they will take vaccination measures. The theoretical analysis and the numerical simulations show that the existence of awareness and vaccination can significantly improve the epidemic threshold and reduce the risk of virus outbreaks. In addition, regardless of the existence of vaccination, the awareness can increase the spreading threshold and slow the spreading speed effectively. For a given awareness and a certain spreading rate, the total number of infections reduces with the increasing vaccination rate.
In this paper, we study the epidemic spreading in scale-free networks and propose a new susceptible-infected-recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Furthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.