In the atmospheric boundary layer, under high pressure conditions and negligible geostrophic winds, problems associated with pollution are the most critical. In this situation local winds play a major role in the evaluation of the atmospheric dynamics at small scales and in dispersion processes. These winds originate as a result of nonuniform heating of the soil, either when it is homogeneous or in discontinuous terrain in the presence of sea and/or slopes. Depending on the source of the thermal gradient, local winds are classified into convective boundary layer, sea and land breezes, urban heat islands, and slope currents. Local winds have been analyzed by (i) simple analytical models; (ii) numerical models; (iii) field measurements; (iv) laboratory measurements through which it is impossible to completely create the necessary similarities, but the parameters that determine the phenomenon can be controlled and each single wind can be separately analyzed. The present paper presents a summary of laboratory simulations of local winds neglecting synoptic winds and the effects of Coriolis force. Image analysis techniques appear suitable to fully describe both the individual phenomenon and the superposition of more than one local wind. Results do agree with other laboratory studies and numerical experiments.