Modeling is one of the most important steps in developing a database. In traditional databases, the
Entity Relationship (ER)
and
Unified Modeling Language (UML)
models are widely used. But how are NoSQL databases being modeled? We performed a systematic mapping review to answer three research questions to identify and analyze the levels of representation, models used, and contexts where the modeling process occurred in the main categories of NoSQL databases. We found 54 primary studies where we identified that conceptual and logical levels received more attention than the physical level of representation. The UML, ER, and new notation based on ER and UML were adapted to model NoSQL databases, in the same way, formats such as JSON, XML, and XMI were used to generate schemas through the three levels of representation. New contexts such as benchmark, evaluations, migration, and schema generation were identified, as well as new features to be considered for modeling NoSQL databases, such as the number of records by entities, CRUD operations, and system requirements (availability, consistency, or scalability). Additionally, a coupling and co-citation analysis was carried out to identify relevant works and researchers.