Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study comprehensively investigates the effect of cryogenic nozzle inlet temperature on the flow structure and interactions of an under-expanded supersonic jet with a spherical solid surface. A combined experimental and numerical approach was employed to achieve this goal, utilizing high-speed Z-type schlieren visualization and Reynolds-averaged Navier–Stokes simulations with a Redlich–Kwong real gas equation of state. This study is significant as it addresses a relatively unexplored area of research on the flow structure of the cryogenic under-expanded supersonic jet. The study examines the shock pattern and interaction region through varying static inlet temperature (Tin = 178–290 K) and nozzle pressure ratio (NPR 5–14). Additionally, parameters including nozzle exit-to-throat area ratio (A/A* = 1.277), the distance between the sphere and the nozzle (1.5 cm), and the diameter of the sphere (d = 1.5 cm) were considered fixed. The results show that the supersonic jet exhibits a change in shock patterns in the first shock cell concerning the location and width of the Mach disk, accompanied by a shift in the location of the last shock crossing point and the shock plate. The simulation provides a more detailed insight into the flow, indicating a temperature drop to 105 K in the case of the cryogenic nozzle inlet. At such a low temperature, the compressibility factor exhibits a 5% reduction from unity, while in the case of the ambient nozzle inlet, the minimum temperature at the nozzle exit reached 170 K, leading to only a 1% drop in the compressibility factor, which is negligible. It triggers different flow structures concerning the nozzle inlet temperature. These findings can contribute to the complex flow structures of supersonic jets seen in different industrial and scientific fields.
This study comprehensively investigates the effect of cryogenic nozzle inlet temperature on the flow structure and interactions of an under-expanded supersonic jet with a spherical solid surface. A combined experimental and numerical approach was employed to achieve this goal, utilizing high-speed Z-type schlieren visualization and Reynolds-averaged Navier–Stokes simulations with a Redlich–Kwong real gas equation of state. This study is significant as it addresses a relatively unexplored area of research on the flow structure of the cryogenic under-expanded supersonic jet. The study examines the shock pattern and interaction region through varying static inlet temperature (Tin = 178–290 K) and nozzle pressure ratio (NPR 5–14). Additionally, parameters including nozzle exit-to-throat area ratio (A/A* = 1.277), the distance between the sphere and the nozzle (1.5 cm), and the diameter of the sphere (d = 1.5 cm) were considered fixed. The results show that the supersonic jet exhibits a change in shock patterns in the first shock cell concerning the location and width of the Mach disk, accompanied by a shift in the location of the last shock crossing point and the shock plate. The simulation provides a more detailed insight into the flow, indicating a temperature drop to 105 K in the case of the cryogenic nozzle inlet. At such a low temperature, the compressibility factor exhibits a 5% reduction from unity, while in the case of the ambient nozzle inlet, the minimum temperature at the nozzle exit reached 170 K, leading to only a 1% drop in the compressibility factor, which is negligible. It triggers different flow structures concerning the nozzle inlet temperature. These findings can contribute to the complex flow structures of supersonic jets seen in different industrial and scientific fields.
Underexpanded jets exhibit interactions between turbulent shear layers and shock-cell trains that yield complex phenomena that are absent in the more commonly studied perfectly expanded jets. We quantitatively analyze these mechanisms by considering the interplay between hydrodynamic (turbulence) and acoustic modes, using a validated large-eddy simulation. Using momentum potential theory (MPT) to achieve energy segregation, the following observations are made. The sharp gradients in fluctuations introduced by the shock-cell structure are captured mostly in the hydrodynamic mode, whose amplitude is an order of magnitude larger than the acoustic mode. The acoustic mode has a relatively smoother distribution, exhibiting a compact wavepacket form. Proper orthogonal decomposition (POD) identifies the third-to-sixth cells as the most dynamic structures. The imprint of shock cells is discernible in the nearfield of the acoustic mode, primarily along the sideline direction. Energy interactions that feed the acoustic mode remain compact in nature, facilitating a simple propagation technique for farfield noise prediction. The farfield sound spectra show peak directivity at 30 • to the downstream axis. The POD modes of the acoustic component also identify two main energetic components in the wavepacket: one representative of the periodic internal structure and the other of intermittent downstream lobes. The latter component occurs at exactly the same frequency as, and displays high correlation with, the farfield peak noise spectra, making the acoustic mode a better predictor of the dynamics than velocity fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.