The mixing process is a widespread phenomenon, which plays an essential role among a large number of industrial processes. The effectiveness of mixing depends on the state of mixed phases, temperature, viscosity and density of liquids, mutual solubility of mixed fluids, type of stirrer, and, what is the most critical property, the shape of the impeller. In the present research, the objective was to investigate the Newtonian fluids flow motion as well as all essential parameters for the mechanically agitated vessel with a new impeller type. The velocity field, the power number, and the pumping capacity values were determined using computer simulation and experimental measurements. The basis for the assessment of the intensity degree and the efficiency of mixing had to do with the analysis of the distribution of velocity vectors and the power number. An experimental and numerical study was carried out for various stirred process parameters and for fluids whose viscosity ranged from low to very high in order to determine optimal conditions for the mixing process.