“…Even with microscopic inspection and complete access to reference collections, humanbased wood identification is typically accurate only to the genus level with reliable species-level identification being rare (Gasson, 2011). Machine learning, on the other hand, either alone (Martins et al, 2013;Filho et al, 2014;Barmpoutis et al, 2017;Kwon et al, 2017Kwon et al, , 2019Rosa da Silva et al, 2017;Figueroa-Mata et al, 2018;Ravindran et al, 2018Ravindran et al, , 2019Ravindran et al, , 2021de Geus et al, 2020;Hwang et al, 2020;Souza et al, 2020;Fabijańska et al, 2021) or in combination with human expertise (Esteban et al, 2009(Esteban et al, , 2017He et al, 2020), has shown promise that species-level identification might be possible, when the woods in question allow resolution at this granularity. Recent work involving the open-source XyloTron platform has shown promise for real-time, field-deployable, screening-level wood identification (Ravindran et al, 2019(Ravindran et al, , 2021Arévalo et al, 2021) with the hardware to transition to smartphone-based systems now available (Tang et al, 2018;Wiedenhoeft, 2020).…”