High-pressure torsion (HPT) is used to investigate the formation of a new metal system by the direct bonding of separate disks of Al and Cu by processing at room temperature under a compressive pressure of 6.0 GPa and with increasing numbers of HPT turns up to 60. A detailed examination of the microstructure and a phase analysis reveal the presence of three intermetallic compounds, Al 2 Cu, AlCu, and Al 4 Cu 9 , in the nanostructured Al matrix with a grain size of %30 nm. Processing by HPT leads to the formation of a metal-matrix nanocomposite with extreme hardness near the edge of the Al-Cu disks after 60 HPT turns. Experiments show that the estimated wear rates exhibit an improvement in wear resistance while maintaining low wear rates for high applied loads up to %40-50 N under dry sliding conditions. The results confirm that there is a significant potential for using HPT processing in the joining and bonding of dissimilar metals at room temperature and in the expeditious fabrication of a wide range of new metal systems having enhanced mechanical and functional properties.