High-pressure torsion (HPT) is used to investigate the formation of a new metal system by the direct bonding of separate disks of Al and Cu by processing at room temperature under a compressive pressure of 6.0 GPa and with increasing numbers of HPT turns up to 60. A detailed examination of the microstructure and a phase analysis reveal the presence of three intermetallic compounds, Al 2 Cu, AlCu, and Al 4 Cu 9 , in the nanostructured Al matrix with a grain size of %30 nm. Processing by HPT leads to the formation of a metal-matrix nanocomposite with extreme hardness near the edge of the Al-Cu disks after 60 HPT turns. Experiments show that the estimated wear rates exhibit an improvement in wear resistance while maintaining low wear rates for high applied loads up to %40-50 N under dry sliding conditions. The results confirm that there is a significant potential for using HPT processing in the joining and bonding of dissimilar metals at room temperature and in the expeditious fabrication of a wide range of new metal systems having enhanced mechanical and functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.